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On the Equivalence of Logical Databases

GABRIEL M. KUPER¢
Stanford University

Stanford, California.

Abstract

We suggest a new approach to database up-
dates, in which a database is treated as a collection
of theories. We investigate two issuces: a) cquiva-
lence of databases under update operations, b) si-

multaneous multiple npdate operations.

| Introduction

One of the main problems in database the-
ory is the problem of view updating, i.c., how to
translate an update on a user view into an update
of the database ([BS], [CA], [DB], 3], [Ke], [K1],
[0]). The problem is that in general there is no
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unique databasc update corresponding to the view
update. Another problem with updating data-
bases is the problem of updating a database which
must satisfy certain integrity constraints ([NY),
[T]). The problem here is that the database after
the update may no longer satisfy the constraints,
in which case we may have to modify other things
im the database, to ensure that the integrity con-
straints still hold. A= in the case of view updates,
there is not necessarily a unique way to mnodify the

databasze so that the constraints still hold.

It is shown in [FUV] that cven in the ab-
sence of constraints, the semantics of updates on
the database itself ix still not completely clear.
They suggest, as in ([Ko], [R]), that the appro-
priate framework for studying the semantics of
updates is to treat the database as a consistent
set of sentences in first-order logic, i.e., a theory.
Every model of the theory is a possible state of
the world. The database is then assumed to be a
model of these septences. Unlike first-order the
orics, however, the facts that are in the set have
a greater signilicance than those that are just im-
plied by them. and when updating the database

we try to keep them as long as possible. When
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deleting a fact, we try to delete as little as passi-

ble, in order to get a theory that does not imply
the deleted fact. Similarly, when inserting a new
fact, we try to delete as few facts as possible, so
that we can then insert the new fact without ere-

ating an inconsistent theory.

One problem with this is that therc may be
scveral possible different results to an update with
no reasonable way to choose between them. One
approach to this is suggested in [FUV]. In this ap-
proach, the result of the update is defined to be the
disjunction of all the possible theories. Two diffi-
culties with this approach are that it requires us
to have sentences of a rather complicated syntax,
e.g., disjunctions of tuples in a relational database,
and that the number of sentences in the database
may grow exponentially with cach update. In this
paper we suggest another approach that consists
of defining the resualt of an update to be a Hock,
which is a collection of theorics. We then assume
that all we know at each stage about the database
is that it is a model of at least one of these the-
ories. With this approach, the sentences we get
are of no greater complexity than those that were
in the database or those that were inserted, and
the number of sentences does not grow as fast as
before. It turns out that the two approaches yield

different results for the same updates.

In this paper, after presenting the flock ap-
proach to updates, we investigate the question
when are two flocks equivalent. Since in our ap-
proach there is a difference between a fact being in
the database and being implied by it, two flocks
that are logically equivalent may not be equiva-
lent under all updates. That is, they may have
the same models, but there may be updates that
when applied to both flocks yicld nonequivalent
Hocks. In this paper, we give necessary and suffi-
cient conditions for equivalence forever and give

several results about batch operatious, ie., in-
serting or deleting several sentences at the same

time.

2 Updates of Theories.

We are going to talk about theories consisting
of first-order sentences, that we assuie are neither
inconsistent nor valid. We shall use the letters §
and T to denote theories (i.c., consistent sets of

sentences).

Semantics of updates are defined in [FUV] as

follows.

Definition 1. (a) A theory T accomplishes the
deletion of o from S if T [ o. (b) A theory T

accomplishes the inscrtion of o into S ifoc € T.

Definition 2. If T\, T, and T are theories, we
say that T, has fewer insertions than Ty with re-
spect to T T, —-TCTy,-T; T, has fewer dele-
tions than Ty with respect to T iff T-Ty, C T—Ty;
and T} has fewer changes than Ty with respcct to
T ff Ty has fewer delctions than Ty, or Ty and T,
have the same deletions (T — T, =T —T;) and T,

has fewer insertions than T,.

Definition 3. A theory T accomplizhes an up-
date u of § minimally iff T accomplishes u and
there is no theory T' that accomplishes u and has

fewer changes than T with respect to S.

It is shown in [FUV] that T accomplishes the
deletion of ¢ from § minimally iff T is a maxi-
mal subset of § that is consistent with —¢, and
that T U {s} accomplishes the insertion of o into
S minimally #f 7' is a maximal subset of S that
is consistent with o. Nevertheless, there could be

many theorics that accomplish an update mini-

mally. Suppose that Ty, ..., T, are the theories




that accomplish an update u of § minimally. It is
argued in [FUV] that the result of u should be a
theory T such that
Mod(T) = | Mod(T),
1<i<n
where Mod(S) is the set of models of the theory

S.

Definition 4. Let Ty, ..., T, be theories. The
disjunction of these theories is defined to be the
theory

V T,‘ = {Tlv---VT,,IT,‘ET;,lSisn}.

1<isn
It is shown in [FUV] that
Mod( \/ T.)= |J Mod(T)).
1<i<'n 17 i<n
Thus they suggest that if T, ..., T, are the theo-

ries that accomplish an npdate » minimally, then
the result of u should be V... Ti.

3 Flocks.

In this paper. we shall talk about another
approach to updates. namely using collections of
theorics. We call these collections Hocks. The in-
tuitive idea is that zince we have many possible
theories that accomplish an update minimally, we

reflect this ambiguity by keeping all these theories.

Definition 5. A flock S is u set of theories. The
models of S are

Mod(S) = | Mod(S).
S¢S§

To update a flock we have to update each the-

ory in the flock. Formally:

Definition 8.  Let S = {Sy,....S.} be a flock.
A flock T = {Ty,...,T,} accomplishes an update

u of S minimally if T; accomplishes the update of

S mintmally, for 1 < < n.

Again, there could be many flocks that ac-
complish an update minimally. Suppose that Ty,
. Tu are the Hocks that accomplish an update
u of § minimally. As in [FUV], we contend that

the result of u should be a flock T such that

Mod(T) = U Mod(T;).
1<i<n

It is casy to show that the flock U, ..., T; has this

property. This motivates the following definition:

Definition 7. Let S be a flock, and let §,
covs Sp be the flocks that accomplish an update u
of S minimally. Then the result of u is the flock

Ul<_x'§n Si.

Lemma 1. Let § = {S;,...,S,} be a flock. For
each theory S;, let S}, ..., Sf‘ be the theories that
accomplish the update u of S; inimally. Then

the result of applying u to S is the flock

S'={Skj1<i<n1<k<j} &

In other words, to update a flock, consider
cach theory in the flock in turn. Take all the-
orics that accomplish the update ninimally and

put them into the new flock.

Note that if a flock is a singleton, i.c., contains
exactly one theory. its models as a theory and as
a flock are the same. Also, the flock we get after
applying an update to such a flock has the same
models as the theory we get by applying the same
update under the FUV.approach. However their
behavior under future npdates may differ, as the

following example shows,

Example 1. If we start with the flock
{{A. B}}. and delcte AA D from it using the flocks

approach, we take all the maximal subthcories of




{A, B} that do not imply A A B, namely {A} and
{B}. That is, the resulting flock is {{A4}, {B}}.
If we were then to delete A, and finally delete B,

we would end up with the flock containing only
the empty theory. i.c., anythiug is a wodel of the
result. On the other hand, if we were to start with
the theory {A. B}, and delete A A B using the ap-
proach of [FUV], we would get the theory {AV B}.
This has the same models as the flock {{A}, {B}}.
However if we now delete A and then delete D, we
would end up with {4 v B}, which does not have

the same models as the emipty theory. 3

4 Equivalence Forever.

We have defined the models of a flock to be
the union of the models of all the theories in the
flock. Thercfore, two singleton flocks are logically
cquivalent if they have the same models. However,
this does uct guaraniee that they will continue to
have the same models after any sequence of inser-

tions and deletions. as the next example shows.

Example 2. The two flocks

{{A, B}}

and

{{A,B,Av B}}

are logically equivalent. However, if we delete first
A and then D from them (using the fHocks rule) we
get the nonequivalent flocks {8} and {8, {Av B}}.

We say that two flocks arc equivalent forever
if after applying any sequence of updates we al-
ways get two flocks that have the siune models.
We would like to know when two flocks are cquiv-
alent forever. We do not have, at present, a sim-
ple necessary and sufficient condition for general

flocks. Howcver, for singleton flocks, i.e., flocks

that contain only one theory, equivalence forever

can be characterized by the property of covering.

Definition 8. We say ‘that a theory S covers
a theory T, 1ff cvery sentence r in T is logically
equivalent to a conjunction oy A --- A o, of sen-

tences in S.

Theorem 1. Let § = {S} and T = {T}
be singleton flocks. Then § and T are equivalent

Jorever if and only if S covers T and T covers S.

Proof: (a) Sufliciency. Assume that S covers T.
We show by induction on the number of inser-

tion/deletion steps that we always have

(VS" € $)(3T' € T')(S’ covers T'A T’ covers §’),

(1)
where §' and T’ arc the Aocks we get from § and
T by doing somne insertions and deletions. By our
assumption. (1) holds at the beginning, when both

flocks are singletons.

Assume that (1) holds after some insertions
and deletions. We have to show that (1) continues
to hold after deleting a sentence . The argument
for insertion is similar. We shall use §! and T!
for the Hocks before the deletion, $2 and T2 for
the flocks afterwards.

Let 2 be any theory in the flock $2. We first
show that there is some theory in T2 that covers
§2,

By the definition of deletion, §% must be a
maximal subset of some theory St in the ock $*
that does not imply ¢. By the inductive hypothe-
sis, there is a theory T! in the flock T! such that
S covers T' and T'! covers St. Let a; be any sen-
tence in the theory 82, Since 82 is a subsct of §t
and T! covers S'. there are sentences 7y, . .., Tin,

in T! such that o; = 7, A= A Tim,.

Let A be the sct of all these 7;’s, for all o's
in §2. We claim that A does not iwply o, the sen-
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tence we deleted. Assume otherwise, ic., A | 0.

Since each o; in §2 implies all the corresponding
rij’s in A, we have 82 E A, and therefore have
§? & o, a contradiction. Therefore 4 docs not
imply o and can be extended to a maximal subset
of T! with this property. Call the maximal sub-
set T2. Since A covers S2, T? also covers 2. We
shall now show that S? covers T2, thus completing

the proof.

Let 7 be any sentence in T2, We have to show
that it is logically equivalent to a conjunction of
seatences in 2. Since SY covers T and T? is a

subset of T, there are gy,...,0% in §* such that
T=0y A Aok (2)

Since T? covers 8%, T? = §2. We also know,
from (2), that T? |= 7 = oy, for cach o;. If some
a; was not in §2, the fact that §2? is a maximal
subset of 81 not implying o would entail that S2uU
{o:} implics a. But then T? = o, a contradiction.
This shows that each o is in §?, and therefore §2

covers T2,

Now let M be a model of some theory 8’ in
the flock §’. By (1}, there is some theory T in
the Hock T, such that S’ covers T'. This implies
that M is also a model of T/, and therefore M
is a model of some theory in the flock T'. By

analogous argument we can show that
(VT' € T')(38' € S')(S' covers T'A T’ covers S'),

where §' and T are the flocks we get from § and
T by doing some insertions and deletions. Con-

sequently, every modcel of T’ is also a model of

5.

(b) Necessity. Assumne that § doces not cover T
Then there is a sentence 7 in T that is not logi-
cally cquivalent to a conjunction of any collection

of sentences of S.

Let D be the set of sentences in SUT that are

not implicd by 7. Let R be be the set of maximal
disjunctions of sentences in D, i.e., the set R of
all disjunctions of sentences in D such that if we
add any other sentence in D to the disjunction,
the result is implied by r. Formally, R consists of

senteuces of the formn
oy V--Voyg,
where cach o; is in D,
THo V- Vo,

and if o is any sentence in D distinet from all the
o,’s, then

rEoV.--VarVo.

We show that if we dclete the sentences in R
from the lock § = {S}, one by one, in any order,
the resulting flock §' will be equal to {§ — D},
and similarly deleting R from T = {T} will result
in {T - D}. We will prove this for §. Since the
proof will not make use of the fact that 7 is not

covered by S, the proof will also work for T

Since no sentence in D is implied by 1, every
o in D can be extended to a maximal disjunction
oVaaV---Vop that is in the set R. After deleting
this disjunction. we get a tlock of theories, none of
which can contain any of the sentences o, 7, ...,
0. Thercfore. after deleting all of the sentences
in It from §, we get a flock §' of theories, each of

which must be a subsct of § — D.

We now show by induction on the nm-nbcr of
delctions, that the result is a singleton flock, con-
sisting'nf one theory that is a superset of § — D.
The basis for the induction is the initial flock .
We show by induction, that if we have a ttock con-
sisting of one theory that is a superset of § — D
and a subsct of S, and we delete a sentence in the
set R from it, we get a singleton flock, also con-
sisting of one theory that is a superset of § — D
and a subsct of S.




Suppose that we have such a flock consisting

of the theory 8’ and we delete from it a sentence
oy V- Voi from B Let D~ {04,...,04} =
{at,...,am}. Since 61 V---Voy is maximal, 7 im-
plieso V---Va,Va; for [ <1< m. If we assuine
that {r,a;....,a,,} implics a; V- - V o, then it
follows that 7 implies 0y V- - - Vo - contradiction.
Consequently, §' ~ DU {«y,...,qa,,} does not im-
ply a1 V--- Va,. That is the result of deleting
o V---Voy from {S§'}is {S'—{oy,...,0k}}. This
completes the induction and shows that T’ is a sin-
gleton, consisting of one theory that is a superset

of § - D.

By the dcfnition of D, we have 7 | § — D,
and therefore T implies the conjunction of all the
sentences in S — D. Since 7 is not a conjunction
of any collection of sentences in §, § — D £ 7.
Therefore, there must be a model M of § ~ D that
is not a model of 7. Then M is a model of §'.
However, since 7 in in T — D, M is not a modecl of

T', and the focks are not forever equivalent. §

From the proof of thiz theorem, we immedi-
ately get a sufficient condition for equivalence for-

ever of arbitrary flocks.

Corollary.let S and T be two flucks that satisfy

the conditions

(V8 € $)(AT ¢ T)S covers T AT covers §)
and

(VT € T)(3S € §)(T covers S A S covers T)

Then § and T are equivalent forever. §§

Example 3. The flocks {{A,B,A A B}} and
{{A.B}} arc cquivalent forever. The focks
{{A,B.A v B}} and {{A4,B}} are not equiva-
leut forever. If we delete A and then B, we get
{{A v B}} from the first flock aud {#} from the

second one.

The converse to the Corollary does not hold,

as the following example shows.

Example 4. The two flocks
{{A,B,A=DB},{A, A= B},{B,A = B}}

and

{{4,A = B},{B,A = B}}

are equivalent forever, but do not satisfy the cov-

cring condition of the Corollary.

9 Batch Operations.

Batch operations consist of deleting or insert-

ing several sentences at the same time.

Definition 9. Let S be a theory, and & a set of
sentences. We say that S’ accomplishes the dele-
tion of ¥ from S if, for cacho € &, §' [t o. We
say that S’ accomplishes the insertion of T into S
iff £ C S’ We say that 8" accomplishes an update
u of § muntwally if S’ accomplishes u and there 1s

no theory that accomplishes u with fewer changes.

The above definition is non-constructive in
the sense that it does not give us any clue as
to how to find those theories that accomplish an
update minimally. The following theorem gives a
constructive cquivalent condition, which general-
izes a result of [FUV].

Theorem 2. Lect S and T be theories, and T a

set of sentences. Then

(1) S accomplishes the delction of  from T min-
tmally if and only if § is a« mazimal subsct of

T that i3 consistent with ~a for alla in B.

(2) SUZ accomplishes the insertion of £ into T
minirnally if and only if S ¢s a mazimal subset
of T that is consistent with . |




-

.

—y— e — e e B B -

-

.- -

- -

Definitions 6 and 7 now define batch opera-

tions for flocks. Namely, to update a Hock, con-
sider each theory in the flock in turn. Take all
theories that accomplish the update this theory

minimally and put them into the new flock.

The following example shows that show that
the batch deletion of £ does not give the same

result as deleting the sentences in £ one by one.

Example 5. Let § be the singleton flock
{{AvB’A = B}}r

and let & be the set {A, B}. The result of deleting
T from § is the flock {{A = B}}. However the
result of deleting first 4 and then B (or first B
and then A) is the flock {{A = B}, 0}.

In the case of singieton flocks, the following

theorem holds.

Theorem 3. Let § = {8} be a singleton flock,
If T, the result of deleting the set of sentences
L from S is a singleton flock {T}, then there is
a sequence of deletions of single sentences which

when applied to S resulls in T .

Proof: This is proved by replacing the deletion
of ¥ by a sequence of deletions of maximal dis-
jinctions of elements of I, in a similar way to the

proof of Theorem 1. g

Remark. This thcorem does not hold if S or T is
not a singleton. If we delete the set {A, B} from
the flock

{{Av B,Av -B,-~Av B}}
we get the flock
{{Av B},{Av -B,-~AvV D}}

which cannot be obtained from a singleton flock by

any sequence of inscrtions and deletions of single

scntences. §

For batch insertions we have the following

theorem.

Theorem 4. Let S be a flock, and let £ =
{o1,..-,0n} a consistent set of sentences. Then
the result of inserting ¥ into § ts the same as first
deleting ~(oy A -+ A @,), and then inserting the

0;’s, one by one into the result. §

Proof: This follows immediately from the fact
that, for any theory S, S is consistent with I iff
S (L A---0,), and from the fact that, once
we have deleted (o3 A -+ - Ag,), insertion of each
o; cousists of simply adding the o; to cach theory

in the flock, without deleting anything clse. §
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